by Ragaviveka Gopalan, BSc, MS; Himanshi Pande, BA; Saralya Narayanan, BSc; and Adith Chinnaswami, MS, MBBS
Ms. Gopalan and Dr. Chinnaswami are with MediSim VR in Chennai, India. Ms. Pande is with the University of Delhi in New Delhi, India. Ms. Narayanan is with the University of Madras in Chennai, India.
FUNDING: No funding was provided for this article.
DISCLOSURES: The authors declare no conflicts of interest relevant to the content of this article.
Innov Clin Neurosci. 2025;22(1–3):28–50.
Abstract
Background: Acute pain (AP) is a prevalent symptom in hospital settings, affecting up to 84 percent of the patients seeking healthcare services. It significantly impacts an individual’s quality of life, with inadequate management resulting in slower recovery, increased cost of care, and a greater risk of developing chronic pain. While pharmacological approaches are effective, they are associated with numerous side effects, including nausea, addiction, and the possibility of fatal overdoses. Given this, virtual reality (VR) offers an innovative avenue to manage AP effectively while minimizing the effects of drugs. Objectives: This study aims to map the extent of literature on utilizing VR as a tool for the nonpharmacological management of AP. Specifically, this review attempts to understand the characteristics of the populations using VR for AP management, the technical specifications and mechanisms used to alleviate AP, and the overall effectiveness of VR in managing AP. Methods: A scoping review was conducted to identify literature from the following electronic databases: PubMed, ScienceDirect, ERIC, and Google Scholar. To be included in this review, articles had to focus on AP in both adult and pediatric populations and address AP using VR in any clinical or care setting. The search was limited to peer-reviewed, English-language, quantitative research articles published between 2000 and 2024. Results: A total of 97 studies were identified. Sixty-six percent of studies demonstrated the efficacy of VR as an analgesic, outperforming traditional nonpharmacological approaches (eg, standard of care, mobile phones). Distraction was the most effective VR mechanism for pain management, showing efficacy in 86.9 percent of studies. The most common focus was on needle-related pain (30.9%), followed by dental and perioperative pain (15.5% each). VR was most effective in wound care (87.5%), followed by labor-related (83.33%) and dental (80%) pain. Conclusion: VR is a promising tool for managing AP, offering considerable benefits in terms of patient care, patient experience, and reduction in drug-related side effects. The high efficacy rates for wound care, labor-related pain, and dental pain highlight the potential for VR to be integrated into standard pain management protocols. However, further research, with rigorous research design, is required to standardize VR interventions and optimize their effectiveness across different patient populations and pain contexts.
Keywords: Pain management, acute pain, procedural pain, nonpharmacological approach, virtual reality
The management of pain is a major global healthcare challenge.1 Specifically, acute pain (AP), pain lasting less than 12 weeks, is the most common type of pain experienced, affecting up to 84 percent of the patients seeking healthcare services.2–4 AP can arise from invasive or noninvasive medical procedures (eg, postoperative care, wound management), trauma and acute illnesses (ie, as a presenting symptom),5 or labor.6,7 Research indicates that AP can impact an individual’s quality of life, including sleep, physical abilities, and mental health.8 Inadequate pain management can contribute to higher morbidity rates, slow recovery, increased cost of care, and a greater risk of developing chronic pain.9 Despite these significant impacts, the effective management of AP remains underweighted in the healthcare context.8,10
Currently, pharmacological treatment is the most widely used option for AP management.8,10 While pharmacological approaches, especially the use of opioids, are highly effective, they are associated with numerous side effects, including dizziness, respiratory depression, hormonal imbalances, and gastrointestinal issues.11,12 Furthermore, the increased use of drugs comes with the steep price of an opioid abuse epidemic.13 Given these drawbacks of pharmacological treatment, the development of alternative AP management strategies is a pressing need in the field.
Virtual reality (VR) is rapidly emerging as a significant nonpharmacological tool within the holistic patient care framework, particularly in the management of AP. VR involves using a three-dimensional display to provide an immersive experience in which the external environment is excluded.14 Studies have shown VR to be associated with a reduction in pain perception, anxiety, and distress during various medical procedures, including burn care, chemotherapy, dental work, and other routine interventions.15–19 VR interventions achieve this by employing techniques such as distraction,20,21 mindfulness,22 and hypnosis.23 This approach offers the potential to manage AP effectively while minimizing the side effects of drugs.
Previous research on VR for the management of AP has been limited in scope. First, existing reviews have predominantly focused on specific patient populations, such as burn victims and procedural pain or dental patients,24 or particular age groups, such as adults or children.25–27 Second, these reviews typically have narrow areas of focus; for instance, Lambert et al26 restricted their scope to interactive VR experiences, overlooking the analgesic effects of noninteractive VR content. Third, in reviews with a broader scope, acute and chronic pain were often examined together,28–30 even though both are different types of pain and have different mechanisms that drive VR’s efficacy. Most reviews have also overlooked the underlying mechanism of VR in managing AP, which is crucial for improving our understanding of VR’s therapeutic potential. While a few recent reviews31,32 have attempted to address these drawbacks, they have mainly compiled literature from recent years. Thus, a review of the entire breadth of literature is necessary to identify the full range of VR applications for AP management, understand the state of knowledge, and guide future research to inform how to effectively use VR to address AP. The objective of the present scoping review is therefore to develop a comprehensive overview of the literature on the use of VR for AP management. In particular, we attempt to map the use of VR as a tool for the nonpharmacological management of AP, identify and analyze the current gaps in the literature, and offer suggestions for future research and development.
Methods
The scoping review was conducted in line with the Joanna Briggs Institute (JBI) methodology for scoping reviews33 and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR)34 and guidance from the general framework outlined by Arksey et al.35 This review comprised five stages:
- Formulating research questions;
- Identifying relevant studies;
- Study selection;
- Charting the data; and
- Collating, summarizing, and reporting the results.
Formulating research questions. The scoping review primarily sought to answer the following question: “To date, what is the extent of literature on utilizing VR as a tool for the nonpharmacological management of AP?” Additional questions were also developed, including: 1) What are the characteristics of the studies included in the review? 2) What are the characteristics of the populations using VR for AP management? 3) What are the technological and experiential characteristics of VR systems used to alleviate AP? 4) What is the effectiveness of VR for AP management? 5) What gaps exist in the literature regarding VR as a nonpharmacological tool for AP management, and how can future research address these gaps?
Identifying relevant studies. Eligibility criteria. The inclusion and exclusion criteria are listed in Table 1. Studies were considered eligible if they involved patients undergoing AP management using VR head-mounted displays with motion-based videos in clinical or care settings. Eligible studies were primary, quantitative, peer-reviewed articles available as full-text that were published from 2000 to 2024 in English.
Information sources and search. A literature search was conducted in March 2024 on the electronic databases PubMed, ScienceDirect, and ERIC. The first 200 results on Google Scholar were used to identify additional potential manuscripts and articles. The full search strategy used for these databases is listed in detail in Appendix 1.
Study selection process. Research articles were considered for inclusion if they related to the use of VR for AP management. The study selection comprised a two-stage screening process, consisting of a title and abstract screening, followed by a full-text review of the articles. The first step involved a screening of the title and abstract of the searched studies using Zotero reference management software and recording the decisions on an eligibility form. After screening for the titles and abstracts, the full articles were independently read for review. The two independent reviewers (HP and SN) screened the articles against the eligibility criteria in both steps. If there was a disagreement between researchers and no consensus was reached, a third researcher (RG) reviewed the article. This process followed the PRISMA guidelines, and the three authors (HP, SN, and RG) verified the final list of included studies.
Charting data. Data charting for the review was adopted from the JBI template33 to extract data from each study. The authors came to a consensus that the extracted data would include the author(s), year of publication, article title, aim, study design, sample size, population (treatment condition), average/median age, type of pain, type of device, interactive (yes/no), content, clinical approach, outcome measured, scale used, key findings, and limitations. Relevant data were extracted from all included studies by two independent reviewers (HP and SN). The full data extraction form can be found in Appendix 2. The study authors were not contacted for any missing or incomplete data.
Collating, summarizing and reporting the results. To characterize and summarize the results, a map of the data extracted from the included manuscripts was presented in a tabular and graphic format. Three reviewers (RG, HP, and SN) collectively conducted a narrative synthesis based on research questions to present a summary of the nature and distribution of the studies included in this review.
Results
The initial search resulted in a total of 3,553 articles. After a thorough review, 97 studies15,17,20,36–129 were found to meet the eligibility criteria and were subsequently included in the review. The article selection process is outlined in Figure 1, and the descriptive data gathered from the eligible studies are presented in Table 2.
Study characteristics. Table 3 indicates a notable increase in research on VR for AP management in recent years, with over 73.2 percent of the total studies published between 2021 and early 2024. Geographically, the majority of the studies were conducted in Europe (28.9%), followed by North America (24.7%) and Asia (23.7%). Middle Eastern countries accounted for 15.5 percent of the publications, while South America, Australia, and Africa collectively accounted for the remaining studies (7.2%). The studies were predominantly some form of controlled trials (randomized, controlled trials [RCT], 60.8%; quasi-experimental designs, 18.6%; RCT cross-over designs [RCT CX], 13.4%), with only 7.2 percent utilizing a pre-post single cohort design. Of the controlled trials, a majority (84.4%) of the studies used one control group, 14.4 percent had two comparators, and 1.1 percent had three comparators. Among the controlled trials, a majority of the studies that offered the intervention had VR alone. However, other studies also offered the VR intervention as an adjunct to standard of care (SOC; 15.4% of total studies), analgesia/anesthesia (18.5% of total studies), and other interventions (1% of total studies). Most (46.2%) of the studies had routine care/SOC as a control group, while other comparators included analgesia/anaesthesia (18.3%), no intervention (7.7%), a two-dimensional digital screen (6.7%), and alternate VR programs (4.8%). As for the sample size, most studies (29.9%) had between 31 to 60 participants, followed by over 100 participants (27.9%), 61 to 100 participants (21.6%) and less than 30 participants (20.7%).
The clinical endpoint of pain was assessed using a range of validated tools across the studies (Table 3). Among the 97 studies included in this review, a total of 106 pain assessment tools were used, as some studies employed multiple scales. Specifically, 89 studies used only one scale to assess pain levels, five studies used two different scales, two studies used three different scales, and one study did not specify the validated measure used. The Visual Analog Scale (VAS) was the most frequently utilized, appearing in 41 studies (38.7%), followed by the Numerical Rating Scale (NRS) in 23 studies (21.7%) and the Wong-Baker FACES Pain Rating Scale (WBFPRS) in 24 studies (22.6%). Additionally, 17 studies employed other measures, including the Revised FACES Pain Scale (FPS-R), Graphic Rating Scale (GRS), Face, Leg, Activity, Cry, Consolability Scale (FLACC), Color Analog Scale (CAS), Defense and Veterans Pain Rating Scale (DVPRS), and Children’s Hospital of Eastern Ontario Pain Scale (CHEOPS).
Sample characteristics. Study participants. In total, the reviewed studies included 7,380 participants. As seen in Table 3, 53.6 percent of studies (n=52/97), examined adult populations, while 45.4 percent (n=44/97) focused on pediatric populations. Among the studies that examined adult populations, only 19.2 percent (n=10/52) included older adults.
Origin of pain. Participants reported a range of reasons for experiencing AP. About 30.9 percent of studies (n=30/97) included participants with needle-related pain, which included pain related to venipunctures, blood sampling, intravenous (IV) placement, and immunization. Dental pain (n=15/97) and perioperative pain (n=15/97), such as that experienced during postoperative care, each accounted for 15.5 percent of the study populations. Of the remaining studies, 12.3 percent (n=12/97) assessed procedural pain, 7.2 percent (n=7/97) assessed pain associated with wound care, 6.2 percent (n=6/97) assessed labor-related pain, and 3.1 percent (n=3/97) assessed pain management during drug infusion/chemotherapy. The nine remaining studies encompassed other miscellaneous origins of pain.
VR characteristics. Technical specifications. Studies have primarily used three types of headsets to administer VR to the participants, which included mobile VR headsets, PC VR headsets that require connection to a powerful gaming PC, and standalone VR headsets with built-in processors for the VR experience. Of the 97 studies, 37 used mobile VR headsets to simulate the virtual environment, 36 studies used untethered, standalone headsets, and 16 used PC headsets. Nine studies did not report the specifics of the VR device used. Among the studies that specified the technical specifications, 58 of them also utilized additional hardware, such as external audio devices (eg, headphones), controllers (eg, mouse, joystick), and display devices (eg, laptops, smartphones) to curate the VR environment. Apart from controllers, audio, and display devices, some studies also used other external hardware, such as foam rubber40 to help the headset better fit younger participants, light sensors,46 and a robot-like goggle arm holder103,104 in studies looking at pain management for burn wound care.
Intervention specifications. The VR intervention was administered across diverse clinical contexts (Table 3). Notably, the majority of studies utilizing VR for pain management implemented the intervention during medical procedures (67%; n=65/97), where the VR exposure would be in line with the length of the procedure. Other studies administered the intervention immediately before and during the medical procedure (8.2%; n=8/97), only postoperatively (7.2%; n=7/97), or only preoperatively (6.2%/ n=6/97). A few studies (11.3%; n=11/97) extended the use of VR across broader clinical settings, such as throughout the entire perioperative phase or during hospitalization for various conditions.
Overall, the duration of the VR intervention was highly varied. A considerable proportion of the studies (46.4%) did not report the duration of the intervention, and of those that did, session duration ranged from one minute to a maximum of 53 minutes. Of the studies reporting duration, 48.1 percent (n=25/52) involved interventions exceeding 15 minutes, 40.4 percent (n=21/52) lasted between 5 and 15 minutes, and 11.5 percent (n=6/52) reported durations of less than five minutes. Most studies (88.7%; n=86/97) administered VR in a single session over the course of the study, while a smaller proportion employed two sessions (3.1%; n=3/97) or more than three sessions (5.6%; n=5/97). A limited number of studies (3.1%; n=3/97) offered variable session numbers, tailored to the specific needs of the patients.
The type of content encountered by the participants encompassed both active and passive engagement (Table 3). Active VR, in which participants actively interacted with the virtual environment, was used in a total of 56.7 percent of the studies. Passive VR, employed in 34 percent of the studies, offered content for passive observation. Twenty-five percent of the studies involved games like Snow World, Temple Run, and Angry Birds, followed by 17.3 percent of the studies employing entertainment videos (eg, movies, cartoons, roller coaster experiences). A total of 15.4 percent of the studies included nature-related videos, and 14.4 percent used guided relaxation/meditation/hypnotherapy content designed for specific goals. Additionally, 5.8 percent of studies utilized real-world recordings, and another 2.9 percent used medical procedure explanations. A total of 4.8 percent of studies had other types of content, 5.8 percent offered a variety of different content categories to participants, 4.8 percent combined various types of content for the VR experience, and 3.8 percent had uncategorized content.
Of these studies, 68 percent of them used commercially available content for the VR intervention, split equally between content developed specifically for pain (34%) and content developed as commercial entertainment (34%). A few of the studies (15.5%) used content developed exclusively for the purpose of the study, and the remaining studies (16.5%) did not report the origin of development for the content used.
VR mechanism. The studies explored various approaches to influence AP using VR. Distraction emerged as the most common mechanism, utilized in 68.9 percent of the studies (n=62/97). A relaxation approach was adopted by 18.6 percent of the studies (n=18/97), while hypnotherapy was used by 6.2 percent (n=6/97) and psychoeducation by 3.1 percent (n=3/97). Of the remaining studies, 10 used a combination of more than one of these approaches, and one offered options to participants of content that utilized a variety of approaches.
Effect of VR on AP management. Overall, 66 percent of studies (n=64/97) in this review demonstrated a statistically significant reduction in pain during VR utilization (Table 3). Among these 64 studies, 78.1 percent (n=50) found VR to be more effective in reducing pain, compared to a non-VR control group, while 21.9 percent (n=14) observed significant pain reduction in within-subject comparisons and comparisons with VR control groups (eg, VR distraction vs. VR hypnosis). Thirty-three percent of the studies (n=32/97) did not find a significant reduction in AP with VR utilization. Of these 32 studies, 90.6 percent (n=29) involved comparisons with a non-VR control group, and 9.4 percent (n=3) involved within-subject comparisons. Notably, one study reported that the VR intervention was less effective than the control group in reducing pain.
Common study limitations. In the studies selected for the review, several common limitations were identified. The most prevalent of them were design- and procedure-related issues (44.3%), including single-center studies, partial or lack of blinding, nonrandomized studies, and the absence of control or within-subject comparison groups. Study sample issues were the second-most common limitation (24.8%), with small sample sizes, sample heterogeneity, and convenience sampling methods being reported. The intervention-related limitations (9.4%) included the VR environment being too simple or too complex for the respective population and mismatched durations between VR interventions and procedures, necessitating last-minute procedural changes. Outcome measures–related concerns (6.7%) involved the use of nonobjective measures of pain using self-report tools or questions being too complex for younger children. Hardware issues (1.3%), such as inconvenient or loose-fitting devices for younger participants and a narrow field of vision, were also observed. Other limitations were diverse, such as cultural differences in reporting pain and anxiety and unaccounted for environmental factors. Notably, 7.4 percent of the studies did not report any challenges.
Discussion
By analyzing 97 studies, this review aimed to explore the extent of research on the use of VR as a nonpharmacological tool for AP management. Specifically, the review attempted to understand five questions: 1) What are the characteristics of the research in this review? 2) What are the characteristics of the populations for whom VR is used in managing AP? 3) What are the technological and experiential characteristics of VR systems used to alleviate AP? 4) What is the effectiveness of VR for AP management? and 5) What gaps exist in the literature regarding the use of VR as a nonpharmacological tool for AP management, and how can future research address these gaps?
What are the characteristics of the studies included in this review? Spanning over two decades of research, from 2000 through early 2024, the review identified a surge in research from 2021 onward (73.3% of the studies). This might be attributed to factors such as the growing need for nonpharmacological pain management approaches and the publication of influential meta-analyses and reviews,14,25,118 which have highlighted the efficacy of VR for AP management. Research on VR for AP management shows a concentrated distribution across North America, Europe, Asia and the Middle East (92.8% of the studies), reflecting regional disparities potentially influenced by cultural contexts and varying levels of technological infrastructure and interest.
With regard to research design, the majority of the studies (74.2%) employed variations of RCTs, indicating rigorous practices and high-quality studies. Many studies (46.2%) compared the effectiveness of VR against routine care or SOC, but the SOC protocols at hospitals/institutions might not be uniform, limiting our ability to compare the findings across studies. While 49.5 percent of the studies included in this review had over 60 participants, the remaining studies (50.5%) had fewer than 60 participants, which suggests caution in generalizing the findings to a broader population. The present review also only focused on studies utilizing standardized pain scales. The VAS, WBPRS, and NRS were the most prevalent tools used, accounting for 83 percent of the included studies. This indicates a shift toward standardizing pain measurement in VR research, facilitating consistent and comparable findings across different VR interventions for AP management.
What are the characteristics of the populations for whom VR is used in managing AP? In the current review, there was almost an equal distribution of pediatric and adult populations exploring the use of VR in managing AP. However, it is notable that only 19.2 percent of the studies investigating the adult demographic included subjects over the age of 65 years in their research. This is a concern, as older adults tend to be more affected by pain, which has a significant impact on physical capacity, strength, and performance in their daily lives.119
The reviewed studies identified a broad spectrum of AP origins for which VR is used as a management tool, reiterating the applicability of the findings to real-world settings. The majority of the studies focused on needle-related pain (30.9%), which is a common experience in medical procedures, highlighting VR’s applicability to alleviate this frequent source of AP. Dental and perioperative pain were also significant focuses (15.5% each), suggesting that VR can be utilized in these contexts to improve patient comfort and reduce reliance on pharmacological relief. Other categories included endoscopy (11.3%), wound care (7.2%), labor pain (6.2%), chemotherapy (3.1%), and other sources (9.3%), demonstrating VR’s versatility as a noninvasive, nonpharmacological pain management tool. However, this also highlights the disproportionate distribution of research, with a significant focus on certain types of pain, such as needle-related pain, while other contexts, such as labor pain and chemotherapy, are less frequently studied.
What are the technological and experiential characteristics of VR systems used to alleviate acute pain? Technical specifications of VR for AP management. In the present review, it was observed that the Oculus Go (Meta; Menlo Park, California), a standalone head-mounted display, was the most commonly used VR headset, and overall, mobile VR headsets and standalone VR headsets were the most prevalent type of headsets used for AP management in clinical practice. Mobile VR headsets, often disposable, offer greater accessibility and affordability, making it more feasible for clinical settings for clinical adoption. This addresses the primary challenges of the high cost of the setup120 and the risk of cross-contamination between patients.133 Standalone head-mounted displays are equipped with integrated graphics processing units, as opposed to PC VR headsets, enhancing portability and user experience.134 Additional hardware, including audio devices, display devices, and controllers, were used to improve usability, though they could sometimes interfere with treatment procedures and might often be prohibited in clinical settings. Notably, a significant proportion of studies did not report key VR device characteristics, such as device specification (23.7%) and type of headset used (7.2%). Future research must specify the details of the VR equipment to ensure replicability and standardization.
Intervention specifications of VR for AP management. Intervention context. The application of VR interventions across diverse clinical contexts highlights the flexibility of VR technology in medical settings for acute pain management. The present review identified that VR is often explored as a tool to modulate pain perception in real-time. Indeed, this targeted application of VR during medical procedures aligns with the notion that immersive technologies can effectively redirect patients’ attention during short-term painful stimuli, helping reduce their overall perception of pain. A smaller proportion of studies implemented VR in pre-, post-, and other perioperative phases, highlighting the underutilization of VR’s potential for reducing other aspects of acute pain management such as preprocedural anxiety and postoperative recovery.
VR mechanism. Distraction emerged as the predominant mechanism (62% of the studies) for the management of AP using VR. This is likely due to its inherent ability to divert the attentional resources away from the nociceptive stimuli toward more engaging sensory inputs, leaving fewer resources available for pain perception.15,88,116 Relaxation (18% of the studies) has also been a mechanism utilized for AP relief, as pain often co-occurs with anxiety and physical tension, enhancing overall positive affect.135 However, relaxation can also be considered a form of distraction since distraction encompasses any cognitive or behavioral strategy that diverts one’s attention away from nociceptive stimuli toward more engaging or attractive stimuli, thereby reducing pain and anxiety.124–126 The literature shows some ambiguity regarding whether relaxing content primarily utilizes relaxation58,98,101 or distraction as the primary mechanism,48,65,75 or both. Establishing clear subcategories or distinctions between various mechanisms would help identify the most effective approach for managing AP using VR. Nonetheless, our findings align with those of other reviews25,31,32 that highlight the popularity of VR distraction as a tool for AP management.
VR content. Interactive or active VR, utilized in 56.7 percent of the reviewed studies, engages users by actively involving them in the VR environment, improving both the level of distraction and immersion experienced by users.70 This approach also provides users with a sense of control over their environment, which is beneficial for managing pain.118,127 However, its applicability might be limited in contexts where mobility is restricted (eg, burn victims, dental procedures) and/or hand controllers cannot be used. Technologies such as head tracking or eye tracking offer potential solutions, but affordable variations of such prospects are currently constrained by a lack of precision139 and the risk of lowering the sense of presence.140
Noninteractive or passive VR, utilized in 34 percent of the studies, involve the user watching or observing VR content, such as films, cartoons, or nature-related environments. While passive VR has a lower distraction potential due to its noninteractive nature, it is particularly apt to promote relaxation and has broader applicability to different populations.81,82,97 Most studies (68%) used commercially available content either developed for pain management or entertainment purposes, and studies rarely relied on content specifically developed for the study. This highlights a gap in the literature regarding the potential for tailored VR interventions that could optimize pain management outcomes.
Intervention dosage. In the present review, a wide variation of session duration and frequency was identified regarding the VR interventions for AP management. There is little consensus on the optimal duration of a VR session or the frequency of the intervention to maximize the benefits. Nearly half of the studies failed to report the session duration, and those that did displayed a broad range, from one minute to 53 minutes. When analyzing by mechanism and context of use, most studies with under five minutes of intervention focused on the mechanism of distraction during the procedure. If the purpose of the intervention is to modulate pain perception through relaxation or hypnosis, less than five minutes might not be sufficient. Indeed, the present review noted a higher proportion of longer duration sessions (>15 minutes) focusing on mechanisms such as relaxation and hypnosis during medical procedures or postoperative admissions. Therefore, further research is required to evaluate VR interventions for AP management based on the purpose and expected outcomes to identify optimal timing.
In addition to the lack of a clear trend in the optimal intervention duration, the most effective number of sessions also have not been identified. The current review observed that 88.7 percent of the studies utilized only one session. Studies that administered two or more sessions predominantly addressed procedural pain, such as labor48,75,127 or multiple burn dressing changes,73,95,141 with the aim of distracting patients from prolonged AP. Meanwhile, relaxation- and hypnosis-based VR interventions with multiple sessions were more common in postoperative settings, aiming to reduce pain perception through relaxation.78,104 Thus, for most procedurally caused AP, a single session that aligns with the length of the procedure might be sufficient for maximizing the benefits. In the context of prolonged procedural pain, such as labor or extensive surgery, it might be advisable to take a 10-to-15-minute break every 30 minutes.142 Nevertheless, if VR is to become a mainstream treatment for modulating AP, further research is needed to evaluate the effectiveness of session dosage based on the specific goal of the intervention.
What is the effectiveness of VR for AP management? Overall, the results of the scoping review suggest that VR is a useful tool for managing AP, with 66 percent of studies demonstrating the efficacy of VR as an analgesic. Studies comparing VR to other forms of pain management, such as routine care, or other distraction methods, such as two-dimensional computer screens60,117 and/or tools including smartphones and tablets,17,101 demonstrated that VR was more effective as an analgesic than traditional nonpharmacological approaches. These results are consistent with other reviews done on the efficacy of VR in AP management.25,32 It is noteworthy that one study reported that pain scores were significantly higher in the VR group, but the study compared VR with 50-percent nitrous oxide/oxygen premix, a pharmacological pain management method.
Distraction was identified as the most effective VR mechanism for pain management, demonstrating efficacy in 86.9 percent of studies. Within the distraction category, all types of content—including games, nature scenes, entertainment, real-world settings, and others—were nearly equally effective, with efficacy demonstrated in 75 percent to 77.77 percent of the studies. Indeed, other reviews have also indicated that for pain lasting for shorter durations, distraction can play a significant role in VR-associated pain relief.141 In contrast, only 55.56 percent and 50 percent of the studies using relaxation and hypnosis, respectively, reported efficacy, highlighting potential but underutilized opportunities for these approaches in managing AP. The limited effectiveness might be due to the current VR experiences for relaxation and hypnosis lacking the necessary engagement, immersion, and customization, as many of these studies relied on commercially available content. To improve outcomes, future research must focus on developing and evaluating VR experiences specifically designed to enhance relaxation and hypnosis for AP management.
Notably, effectiveness was most pronounced in studies where the VR content used was specifically designed for the purpose of the study, with an efficacy rate of 73.33 percent. This was followed by commercially available VR designed for general use or entertainment, which showed 69.69 percent effectiveness. The least effective were studies wherein commercially available VR was specifically intended for pain management (57.57% effectiveness). This suggests that tailored VR content developed with a focus on a research study’s objectives might offer better outcomes than generic or even purpose-built pain management VR, highlighting the importance of customized, purpose-driven VR solutions to achieve the best pain management results.
Among the various categories of pain explored, VR was reported to be most effective in wound care, with 87.5 percent of studies showing positive results. This was followed by labor-related pain (83.33%) and dental pain (80%). Extensive research has been conducted in the field of VR for burn care, and some of the earliest studies associated with using VR for AP management focused on burn care, further supporting its effectiveness.16,141,142 Similarly, there is a substantial body of literature on the usage of VR in dental settings, where procedures are relatively simple but often induce high levels of anxiety and discomfort in patients.92 It is important to note that limited research has been conducted for certain categories of pain, indicating the need for more studies to confirm the effectiveness of VR in such contexts. Nevertheless, these findings highlight VR’s potential in diverse pain management scenarios and the need for continued research to refine and optimize VR applications for various types of AP.
What gaps exist in the literature regarding the use of VR as a nonpharmacological tool for AP management, and how can future research address these gaps? This review reveals several significant shortcomings in the literature on VR for AP management. Despite an increased utilization of RCTs, other study design issues remain, including reliance on single-center studies, lack of standardized comparison groups, and small sample sizes recruited through convenience sampling methods. These issues, combined with an underrepresentation of older adults and a disproportionate focus on needle-related pain compared to other contexts, limit the generalizability of findings. Furthermore, the literature often lacks detailed information on VR device specifications, affecting replicability and standardization. The literature also reveals ambiguity in distinguishing between relaxation and distraction mechanisms in VR-based interventions. To address these limitations, future research should focus on diversifying populations and pain contexts, employing rigorous randomization and blinding procedures and utilizing larger sample sizes with systematic sampling methods. Detailed reporting on VR device specifications and clearer definitions of VR mechanisms are necessary as well. The present review also noted a heavy dependence on commercially available VR content, rather than content specifically tailored for AP management contexts, which might not fully address the unique needs of different patient populations. While interactive VR has been extensively studied, passive VR content, which could benefit patients with mobility restrictions, remains underexplored. Advanced VR technologies, such as eye tracking and head tracking, which could enhance user interaction and immersion, are also underutilized due to issues with precision and cost. Therefore, exploring tailored VR content, assessing the sustained effects of VR, and evaluating cost-effectiveness compared to traditional methods should be prioritized. Future research should also investigate the feasibility and adoption of VR in clinical settings, along with conducting usability studies in collaboration with VR developers and healthcare professionals to ensure comprehensive and practical advancements in VR applications for AP management. Addressing these limitations is crucial for advancing research and optimizing VR applications for AP management.
Limitations. While the present study is one of the first to comprehensively review the literature on VR as a tool for AP management, there are a few limitations that must be acknowledged. First, the search strategy was restricted to databases with free articles and the first 200 pages of Google Scholar, potentially missing seminal studies published in subscription-based journals or beyond the initial search scope. Second, the review might have misinterpreted the results. Effect sizes were not considered; instead, the review relied on frequency counts to identify the number of studies with effective and ineffective interventions. This approach lacks rigor and does not account for aspects of study designs that might affect the significance of the effectiveness, such as sample size and overall design quality (risk of bias). Additionally, the results of this review could be subjected to publication bias, as it has been demonstrated that approximately 90 percent of literature in fields such as psychiatry, psychology, and clinical medicine report positive findings,143 which might lead to an overestimation of VR’s analgesic effects. There also might have been misinterpretations of the underlying mechanism of VR. While the studies that utilized distraction often mentioned it in their article, those utilizing other mechanisms were not reported clearly. There is also a lack of consensus on what constitutes specific mechanisms; some researchers classify relaxation as a form of distraction, while others differentiate between the two mechanisms. Third, the review did not consider secondary measures, such as adverse outcomes of VR, anxiety, and physiological parameters. Including these could have identified more objective measures rather than focusing solely on subjective self-reports, though this was outside the scope of the review. Finally, in some studies, VR was used as an adjunct to conventional pharmacological or nonpharmacological treatments, making it difficult to establish the extent of the therapeutic effects attributable specifically to VR.
Conclusion
Clinical implications. The present review highlights VR’s considerable potential as an effective nonpharmacological tool for managing AP across diverse contexts. Given the high effectiveness rates, particularly for needle-related pain, wound care, dental pain, and labor-related pain, VR might be a valuable tool in reducing the reliance on pharmacological pain relief methods. The near-equal distribution of studies on pediatric and adult populations suggests VR’s versatility, though the underrepresentation of older adults highlights a need for further research in this demographic, who might particularly benefit from VR interventions. However, it is important to note that older adults tend to have considerable visual and hearing impairments that might affect the utilization of VR technology. The higher efficacy rates of tailored VR content emphasize the importance of developing customized VR experiences that address specific patient needs and contexts. Furthermore, the preference for mobile and standalone VR headsets indicates that there may be a necessity for a practical solution that balances affordability, accessibility, and user experience in clinical settings. The review’s findings on the effectiveness of distraction as a primary mechanism for pain relief suggest that clinicians and VR developers should be mindful of designing and selecting appropriate VR content based on individual patient needs. Addressing gaps in VR research, such as the need for more diverse pain context studies, larger sample sizes, and detailed device specifications, is also crucial for advancing the field. Therefore, while VR implementation provides benefits, such as reduced reliance on pharmacological interventions and enhanced patient comfort, it is important to consider potential challenges, such as device maintenance, individualization of VR experiences for patients, affordability of the device for individuals from different socioeconomic backgrounds, and the potential side effects (eg, eye strain, cybersickness, headaches, and nausea), especially in children.
Appendix
To access the appendix, please visit https://innovationscns.com/wp-content/uploads/ Gopalan_Appendix.docx.
References
- Upp J, Kent M, Tighe PJ. The evolution and practice of acute pain medicine. Pain Med. 2013;14(1):124–144.
- Damico V, Murano L, Cazzaniga F, et al. Pain prevalence, severity, assessment and management in hospitalized adult patients: a result of a multicenter cross sectional study. Ann Ist Super Sanita. 2018;54(3):194–200.
- Gregory J, McGowan L. An examination of the prevalence of acute pain for hospitalised adult patients: a systematic review. J Clin Nurs. 2016;25(5–6):583–598.
- Xiao H, Liu H, Liu J, et al. Pain prevalence and pain management in a Chinese hospital. Med Sci Monit. 2018;24:7809–7819.
- Carr DB, Goudas LC. Acute pain. Lancet. 1999;12;353(9169):2051–2058.
- Teixeira JMF, Durão MC. Pain assessment in critically ill patients: an integrative literature review. Rev Enferm Referência. 2016;10:135–142.
- Moore ND. In search of an ideal analgesic for common acute pain. Acute Pain. 2009;11(3–4):129–137.
- Sinatra R. Causes and consequences of inadequate management of acute pain. Pain Med. 2010;11(12):1859–1871.
- Gan TJ. Poorly controlled postoperative pain: prevalence, consequences, and prevention. J Pain Res. 2017;10:2287–2298.
- Hyland SJ, Wetshtein AM, Grable SJ, et al. Acute pain management pearls: a focused review for the hospital clinician. Healthcare (Basel). 2022;11(1):34.
- Alshehri FS. Tapentadol: a review of experimental pharmacology studies, clinical trials, and recent findings. Drug Des Devel Ther. 2023;17:851–861.
- Paul AK, Smith CM, Rahmatullah M, et al. Opioid analgesia and opioid-induced adverse effects: a review. Pharmaceuticals (Basel). 2021;14(11):1091.
- Huang Q, Lin J, Han R, et al. Using virtual reality exposure therapy in pain management: a systematic review and meta-analysis of randomized controlled trials. Value Health. 2022;25(2):288–301.
- Chan E, Foster S, Sambell R, et al. Clinical efficacy of virtual reality for acute procedural pain management: a systematic review and meta-analysis. PLoS ONE. 2018;13(7):e0200987.
- Atzori B, Lauro Grotto R, Giugni A, et al. Virtual reality analgesia for pediatric dental patients. Front Psychol. 2018;9:2265.
- Hoffman HG, Doctor JN, Patterson DR, et al. Virtual reality as an adjunctive pain control during burn wound care in adolescent patients. Pain. 2000;85(1–2):305–309.
- Pandrangi VC, Shah SN, Bruening JD, et al. Effect of virtual reality on pain management and opioid use among hospitalized patients after head and neck surgery: a randomized clinical trial. JAMA Otolaryngol Head Neck Surg. 2022;148(8):724–730.
- Wolitzky K, Fivush R, Zimand E, et al. Effectiveness of virtual reality distraction during a painful medical procedure in pediatric oncology patients. Psychol Health. 2005;20(6):817–824.
- Wong MS, Spiegel BMR, Gregory KD. Virtual reality reduces pain in laboring women: a randomized controlled trial. Am J Perinatol. 2021;38(S01):e167–e172.
- Deo N, Khan KS, Mak J, et al. Virtual reality for acute pain in outpatient hysteroscopy: a randomised controlled trial. BJOG. 2021;128(1):87–95.
- Gates M, Hartling L, Shulhan-Kilroy J, et al. Digital technology distraction for acute pain in children: a meta-analysis. Pediatrics. 2020;145(2):e20191139.
- Arpaia P, D’Errico G, De Paolis LT, et al. A narrative review of mindfulness-based interventions using virtual reality. Mindfulness. 2022;13:556–571.
- Rousseaux F, Panda R, Toussaint C, et al. Virtual reality hypnosis in the management of pain: self-reported and neurophysiological measures in healthy subjects. Eur J Pain. 2023;27(1):148–162.
- Fan L, Zeng J, Ran L, et al. Virtual reality in managing dental pain and anxiety: a comprehensive review. Front Med (Lausanne). 2023;10:1285142.
- Dreesmann NJ, Su H, Thompson HJ. A systematic review of virtual reality therapeutics for acute pain management. Pain Manag Nurs. 2022;23(5):672–681.
- Lambert V, Boylan P, Boran L, et al. Virtual reality distraction for acute pain in children. Cochrane Database Syst Rev. 2020;22;10(10):CD010686.
- Iannicelli AM, Vito D, Dodaro CA, et al. Does virtual reality reduce pain in pediatric patients? A systematic review. Ital J Pediatr. 2019;45(1):171.
- Mallari B, Spaeth EK, Goh H, et al. Virtual reality as an analgesic for acute and chronic pain in adults: a systematic review and meta-analysis. J Pain Res. 2019;12:2053–2085.
- Viderman D, Tapinova K, Dossov M, et al. Virtual reality for pain management: an umbrella review. Front Med (Lausanne). 2023;14;10:1203670.
- Malloy KM, Milling LS. The effectiveness of virtual reality distraction for pain reduction: a systematic review. Clin Psychol Rev. 2010;30(8):1011–1018.
- Zahmat B. Mechanisms of virtual reality therapies in acute and chronic pain management: a systematic review. Thesis. University of Twente; 2020.
- Baker NA, Polhemus AH, Haan Ospina E, et al. The state of science in the use of virtual reality in the treatment of acute and chronic pain: a systematic scoping review. Clin J Pain. 2022;38(6):424–441.
- Peters MDJ, Godfrey C, McInerney P, et al. Best practice guidance and reporting items for the development of scoping review protocols. JBI Evid Synth. 2022;20(4):953–968.
- Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–473.
- Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32.
- Du Q, Ma X, Wang S, et al. A digital intervention using virtual reality helmets to reduce dental anxiety of children under local anesthesia and primary teeth extraction: a randomized clinical trial. Brain Behav. 2022;12(6):e2600.
- Le Du K, Septans AL, Maloisel F, et al. A new option for pain prevention using a therapeutic virtual reality solution for bone marrow biopsy (REVEH Trial): open-label, randomized, multicenter, Phase 3 study. J Med Internet Res. 2023;25:e38619.
- Hundert AS, Birnie KA, Abla O, et al. A pilot randomized controlled trial of virtual reality distraction to reduce procedural pain during subcutaneous port access in children and adolescents with cancer. Clin J Pain. 2021;38(3):189–196.
- Smith V, Warty RR, Kashyap R, et al. A randomised controlled trial to assess the feasibility of utilising virtual reality to facilitate analgesia during external cephalic version. Sci Rep. 2020;10(1):3141.
- Thybo KH, Friis SM, Aagaard G, et al. A randomized controlled trial on virtual reality distraction during venous cannulation in young children. Acta Anaesthesiol Scand. 2022;66(9):1077–1082.
- Atzori B, Vagnoli L, Graziani D, et al. An exploratory study on the effectiveness of virtual reality analgesia for children and adolescents with kidney diseases undergoing venipuncture. Int J Environ Res Public Health. 2022;19(4):2291.
- Bosso L, Espejo T, Taffé P, et al. Analgesic and anxiolytic effects of virtual reality during minor procedures in an emergency department: a randomized controlled study. Ann Emerg Med. 2023;81(1):84–94.
- Ran L, Zhao N, Fan L, et al. Application of virtual reality on non-drug behavioral management of short-term dental procedure in children. Trials. 2021;22(1):562.
- Rao DG, Havale R, Nagaraj M, et al. Assessment of efficacy of virtual reality distraction in reducing pain perception and anxiety in children aged 6-10 years: a behavioral interventional study. Int J Clin Pediatr Dent. 2019;12(6):510–513.
- Ferraz-Torres M, Soto-Ruiz N, Escalada-Hernández P, et al. Can virtual reality reduce pain and anxiety in pediatric emergency care and promote positive response of parents of children? A quasi-experimental study. Int Emerg Nurs. 2023;68:101268.
- Nunna M, Dasaraju RK, Kamatham R, et al. Comparative evaluation of virtual reality distraction and counter-stimulation on dental anxiety and pain perception in children. J Dent Anesth Pain Med. 2019;19(5):277–288.
- Almugait M, AbuMostafa A. Comparison between the analgesic effectiveness and patients’ preference for virtual reality vs. topical anesthesia gel during the administration of local anesthesia in adult dental patients: a randomized clinical study. Sci Rep. 2021;11(1):23608.
- Ebrahimian A, Bilandi RR, Bilandī MRR, et al. Comparison of the effectiveness of virtual reality and chewing mint gum on labor pain and anxiety: a randomized controlled trial. BMC Pregnancy Childbirth. 2022;22(1):49.
- Hoag JA, Karst J, Bingen K, et al. Distracting through procedural pain and distress using virtual reality and guided imagery in pediatric, adolescent, and young adult patients: randomized controlled trial. J Med Internet Res. 2022;24(4):e30260.
- Zaidman L, Lusky G, Shmueli A, et al. Distraction with virtual reality goggles in paediatric dental treatment: a randomised controlled trial. Int Dent J. 2023;73(1):108–113.
- Gold JI, SooHoo M, Laikin AM, et al. Effect of an immersive virtual reality intervention on pain and anxiety associated with peripheral IV catheter placement in the pediatric setting: a randomized clinical trial. JAMA Netw Open. 2021;4(8):e2122569.
- Bal S, Kulakaç Ö. Effect of comfort theory-based nursing care on pain and comfort in women undergoing hysterosalpingography: a randomized controlled trial. Rev Assoc Medica Bras (1992). 2023;69(12):e20230798. Erratum in: Rev Assoc Med Bras (1992). 2024;11;70(10):e20230798ERRATUM.
- Abdelaal Mohamed EW, Mohamed HI. Effect of flippits versus virtual reality on pain, fear, and satisfaction during phlebotomy among children. J Pak Med Assoc. 2023;73(Suppl 4):S215–S220.
- Shetty V, Suresh LR, Hegde AM. Effect of virtual reality distraction on pain and anxiety during dental treatment in 5 to 8 year old children. J Clin Pediatr Dent. 2019;43(2):97–102.
- Felemban OM, Alshamrani RM, Aljeddawi DH, et al. Effect of virtual reality distraction on pain and anxiety during infiltration anesthesia in pediatric patients: a randomized clinical trial. BMC Oral Health. 2021;21:321.
- Zhao X, Ma J, Fang R, et al. Effect of virtual reality distraction on satisfaction and tolerability in patients undergoing in-office KTP laser procedure. J Voice. 2023;S0892-1997(23)00160-1.
- Mohanasundari SK, Raghu VA, Joseph J, et al. Effectiveness of flippits and virtual reality therapy on pain and anxiety among children undergoing painful procedures. Cureus. 2021;13(8):e17134.
- Burrai F, Ortu S, Marinucci M, et al. Effectiveness of immersive virtual reality in people with cancer undergoing antiblastic therapy: a randomized controlled trial. Semin Oncol Nurs. 2023;39(4):151470.
- Amali RJ, Chavan SS. Effectiveness of virtual reality distraction on pain perception and fear among children with cancer undergoing IV cannulation. Indian J Community Med. 2023;48(6):909–914.
- Sharma Y, Bhatia HP, Sood S, et al. Effectiveness of virtual reality glasses digital screens and verbal command as a method to distract young patients during administration of local anesthesia. Int J Clin Pediatr Dent. 2021;14(Suppl 2):S143–S147.
- Joo Y, Kim EK, Song HG, et al. Effectiveness of virtual reality immersion on procedure-related pain and anxiety in outpatient pain clinic: an exploratory randomized controlled trial. Korean J Pain. 2021;34(3):304–314.
- Hsu MF, Whu YW, Lin IC, et al. Effectiveness of virtual reality interactive play for children during IV placement: a randomized controlled trial. Asian Nurs Res. 2022;16(2):87–93.
- Wong CL, Choi KC. Effects of an immersive virtual reality intervention on pain and anxiety among pediatric patients undergoing venipuncture: a randomized clinical trial. JAMA Netw Open. 2023;6(2):e230001.
- Ryu JH, Han SH, Hwang SM, et al. Effects of virtual reality education on procedural pain and anxiety during venipuncture in children: a randomized clinical trial. Front Med (Lausanne). 2022;9:849541.
- Dalir Z, Seddighi F, Esmaily H, et al. Effects of virtual reality on chest tube removal pain management in patients undergoing coronary artery bypass grafting: a randomized clinical trial. Sci Rep. 2024;14(1):2918.
- Verzwyvelt LA, McNamara A, Xu X, et al. Effects of virtual reality v. biophilic environments on pain and distress in oncology patients: a case-crossover pilot study. Sci Rep. 2021;11:20196.
- Xiang H, Shen J, Wheeler KK, et al. Efficacy of smartphone active and passive virtual reality distraction vs standard care on burn pain among pediatric patients: a randomized clinical trial. JAMA Netw Open. 2021;4(6):e2112082.
- Bahrololoomi Z, Zein Al-Din J, Maghsoudi N, et al. Efficacy of virtual reality distraction in reduction of pain and anxiety of pediatric dental patients in an Iranian population: a split-mouth randomized crossover clinical trial. Int J Dent. 2024;2024:1290410.
- Chang J, Ninan S, Liu K, et al. Enhancing patient experience in office-based laryngology procedures with passive virtual reality. OTO Open. 2021;5(1):2473974X20975020.
- Jain S, Armstrong M, Luna J, et al. Features of virtual reality impact effectiveness of VR pain alleviation therapeutics in pediatric burn patients: a randomized clinical trial. PLOS Digit Health. 2024;3(1):e0000440.
- Olbrecht VA, O’Conor KT, Williams SE, et al. Guided relaxation-based virtual reality for acute postoperative pain and anxiety in a pediatric population: pilot observational study. J Med Internet Res. 2021;23(7):e26328.
- Kumari S, Bahuguna R, Garg N, et al. Immersive and non-immersive virtual reality distraction on pain perception to intraoral injections. J Clin Pediatr Dent. 2021;45(6):389–394.
- Hoffman HG, Rodriguez RA, Gonzalez M, et al. Immersive virtual reality as an adjunctive non-opioid analgesic for pre-dominantly latin american children with large severe burn wounds during burn wound cleaning in the intensive care unit: a pilot study. Front Hum Neurosci. 2019;13:262.
- Chang ZY, Kang GCY, Koh EYL, et al. Immersive virtual reality in alleviating pain and anxiety in children during immunization in primary care: a pilot randomized controlled trial. Front Pediatr. 2022;10:847257.
- Carus EG, Albayrak N, Bildirici HM, et al. Immersive virtual reality on childbirth experience for women: a randomized controlled trial. BMC Pregnancy Childbirth. 2022;22(1):354.
- Chiu CC, Lin YT, Wang Y, et al. Immersive virtual reality to distract from pain in children treated with L-asparaginase by intramuscular injection. Cureus. 2023;15(1):e34317.
- Perenic E, Grember E, Bassard S, et al. Impact of virtual reality on pain management in transrectal MRI-guided prostate biopsy. Front Pain Res (Lausanne). 2023;4:1156463.
- Ong TL, Ruppert MM, Akbar M, et al. Improving the Intensive care patient experience with virtual reality—a feasibility study. Crit Care Explor. 2020;2(6):e0122.
- Łuczak M, Nowak Ł, Chorbińska J, et al. Influence of virtual reality devices on pain and anxiety in patients undergoing cystoscopy performed under local anaesthesia. J Pers Med. 2021;11(11):1214.
- Soret L, Gendron N, Rivet N, et al. Pain assessment using virtual reality facemask during bone marrow aspiration: prospective study including propensity-matched analysis. JMIR Serious Games. 2022;10(4):e33221.
- Canares T, Parrish C, Santos C, et al. Pediatric coping during venipuncture with virtual reality: pilot randomized controlled trial. JMIR Pediatr Parent. 2021;4(3):e26040.
- Barry KS, Nimma SR, Spaulding AC, et al. Perioperative outcomes of immersive virtual reality as adjunct anesthesia in primary total hip and knee arthroplasty. Arthroplast Today. 2022;18:84–88.
- Armstrong M, Coffey R, Luna J, et al. Pilot randomized clinical trial of virtual reality pain management during adult burn dressing changes: lessons learned. PLoS Digit Health. 2023;2(9):e0000231.
- Droc G, Isac S, Nita E, et al. Postoperative cognitive impairment and pain perception after abdominal surgery-could immersive virtual reality bring more? A clinical approach. Medicina (Kaunas). 2023;17;59(11):2034.
- Toledo del Castillo B, Pérez Torres JA, Morente Sánchez L, et al. Reducing the pain in invasive procedures during paediatric hospital admissions: fiction, reality or virtual reality? An Pediatr (Engl Ed). 2019;91(2):80–87.
- Sweta VR, Abhinav RP, Ramesh A. Role of virtual reality in pain perception of patients following the administration of local anesthesia. Ann Maxillofac Surg. 2019;9(1):110–113.
- Sooriyaghandan IV, Mohamad Jailaini MF, Nik Abeed NN, et al. Satisfaction and tolerability using virtual reality (VR) as adjunctive treatment during flexible bronchoscopy: a randomized control trial. BMC Pulm Med. 2023;23(1):10.
- Butt M, Kabariti S, Likourezos A, et al. Take-pause: efficacy of mindfulness-based virtual reality as an intervention in the pediatric emergency department. Acad Emerg Med. 2022;29(3):270–277.
- Orhan M, Bülez A. The effect of virtual reality glasses applied during the episiotomy on pain and satisfaction: a single blind randomized controlled study. J Pain Res. 2023;16:2227–2239.
- Karaveli Çakır S, Evirgen S. The effect of virtual reality on pain and anxiety during colonoscopy: a randomized controlled trial. Turk J Gastroenterol. 2021;32(5):451–457.
- JahaniShoorab N, Ebrahimzadeh Zagami S, Nahvi A, et al. The effect of virtual reality on pain in primiparity women during episiotomy repair: a randomize clinical trial. Iran J Med Sci. 2015;40(3):219–224.
- Ghobadi A, Moradpoor H, Sharini H, et al. The effect of virtual reality on reducing patients’ anxiety and pain during dental implant surgery. BMC Oral Health. 2024;24(1):186.
- Pelazas-Hernández JA, Varillas-Delgado D, González-Casado T, et al. The effect of virtual reality on the reduction of pain in women with an indication for outpatient diagnostic hysteroscopy: a randomized controlled trial. J Clin Med. 2023;12(11):3645.
- Fadholi K, Mustofa A. The effectiveness of murottal al-qur’an therapy and virtual reality to reduce pain intensity in post operating patients. South East Asia Nurs Res. 2020;2(2):74–81.
- Das DA, Grimmer KA, Sparnon AL, et al. The efficacy of playing a virtual reality game in modulating pain for children with acute burn injuries: a randomized controlled trial [ISRCTN87413556]. BMC Pediatr. 2005;3;5(1):1.
- Erdős S, Horváth K. The impact of virtual reality (VR) on psychological and physiological variables in children receiving chemotherapy: a pilot cross-over study. Integr Cancer Ther. 2023;22:15347354231168984.
- Asl Aminabadi N, Erfanparast L, Sohrabi A, et al. The impact of virtual reality distraction on pain and anxiety during dental treatment in 4-6 year-old children: a randomized controlled clinical trial. J Dent Res Dent Clin Dent Prospects. 2012;6(4):117–124.
- Brown L, Chen ET, Binder DS. The use of virtual reality for peri-procedural pain and anxiety at an outpatient spine clinic injection visit: an exploratory controlled randomized trial. Am J Transl Res. 2020;12(9):5818–5826.
- Riska H, Widaryanti R, Yuliani I, et al. Understanding the effect of virtual reality on anxiety and pain due to intrauterine device insertion. Iran J Nurs Midwifery Res. 2024;29(1):140–142.
- Gil Piquer R, Mañes Jiménez Y, España Marí M, et al. Usefulness of virtual reality in the management of pain associated with venepuncture: a multicentre randomized clinical trial. An Pediatr (Engl Ed). 2024;100(1):25–33.
- Specht BJ, Buse CR, Phelps JR, et al. Virtual reality after surgery—a method to decrease pain after surgery in pediatric patients. Am Surg. 2021;89(4):31348211032204.
- Atzori B, Hoffman HG, Vagnoli L, et al. Virtual reality analgesia during venipuncture in pediatric patients with onco-hematological diseases. Front Psychol. 2018;9:2508.
- Hoffman HG, Patterson DR, Rodriguez RA, et al. Virtual reality analgesia for children with large severe burn wounds during burn wound debridement. Front Virtual Real. 2020;1:602299.
- Rousseaux F, Dardenne N, Massion PB, et al. Virtual reality and hypnosis for anxiety and pain management in intensive care units: a prospective randomised trial among cardiac surgery patients. Eur J Anaesthesiol. 2022;39(1):58–66.
- Payne O, Smith V, Rolnik DL, et al. Virtual reality and its use in post-operative pain following laparoscopy: a feasibility study. Sci Rep. 2022;12(1):13137.
- Goergen DI, Freitas DMO. Virtual reality as a distraction therapy during cystoscopy: a clinical trial. Rev Col Bras Cir. 2022;49:e20223138.
- Vázquez JLM, Wiederhold BK, Miller I, et al. Virtual reality assisted anesthesia (VRAA) during upper gastrointestinal endoscopy: report of 115 cases—analysis of physiological responses. Surg Res Updat. 2017;5:1–11.
- Ding J, He Y, Chen L, et al. Virtual reality distraction decreases pain during daily dressing changes following haemorrhoid surgery. J Int Med Res. 2019;47(9):4380–4388.
- Pandya PG, Kim TE, Howard SK, et al. Virtual reality distraction decreases routine IV sedation and procedure-related pain during preoperative adductor canal catheter insertion: a retrospective study. Korean J Anesthesiol. 2017;70(4):439–445.
- Veldhuijzen G, Klaassen NJM, Van Wezel RJA, et al. Virtual reality distraction for patients to relieve pain and discomfort during colonoscopy. Endosc Int Open. 2020;8(7):E959–E966.
- Zheng L, Liu H. Virtual reality distraction, a novel tool for pain alleviation during dressing change following surgical drainage of perianal abscess at day treatment centre. Digit Health. 2023;9:20552076231155675.
- Eijlers R, Dierckx B, Staals LM, et al. Virtual reality exposure before elective day care surgery to reduce anxiety and pain in children: a randomised controlled trial. Eur J Anaesthesiol. 2019;36(10):728–737.
- David R, Dumas A, Ojardias E, et al. Virtual reality for decreasing procedural pain during botulinum toxin injection related to spasticity treatment in adults: a pilot study. Medicina (Kaunas). 2023;60(1):23.
- Bernaerts S, Bonroy B, Daems J, et al. Virtual reality for distraction and relaxation in a pediatric hospital setting: an interventional study with a mixed-methods design. Front Digit Health. 2022;4:866119.
- Ellerton K, Tharmarajah H, Puleio D, et al. Virtual reality for IMMunisation (VRIMM) pain in young children: results of a randomised controlled trial in general practice. Aust J Gen Pract. 2023;52(10):704–710.
- Spiegel B, Fuller G, Lopez M, et al. Virtual reality for management of pain in hospitalized patients: a randomized comparative effectiveness trial. PLoS One. 2019;14(8):e0219115.
- Tashjian VC, Mosadeghi S, Howard AR, et al. Virtual reality for management of pain in hospitalized patients: results of a controlled trial. JMIR Ment Health. 2017;4(1):e9.
- Birrenbach T, Bühlmann F, Exadaktylos AK, et al. Virtual reality for pain relief in the emergency room (VIPER)—a prospective, interventional feasibility study. BMC Emerg Med. 2022;22(1):113.
- Roxburgh T, Li A, Guenancia C, et al. Virtual reality for sedation during atrial fibrillation ablation in clinical practice: observational study. J Med Internet Res. 2021;23(5):e26349.
- O’Sullivan D, O’Callaghan J, Barrett M. Virtual reality hypnoanxiolysis and analgesia for emergency department needle-related procedures: a prospective interventional cohort pilot study implementation. Mayo Clin Proc Digit Health. 2023;1(3):288–293.
- Patterson DR, Jensen MP, Wiechman SA, et al. Virtual reality hypnosis for pain associated with recovery from physical trauma. Int J Clin Exp Hypn. 2010;58(3):288–300.
- de Araújo TM, da Silva ASJ, Brandão MGSA, et al. Virtual reality in pain relief during chronic wound dressing change. Rev Esc Enferm USP. 2021;55:e20200513.
- Vasquez JM, Vaca VL, Wiederhold BK, et al. Virtual reality pain distraction during gynecological surgery—a report of 44 cases. Surg Res Updat. 2017;5(1):12–16.
- Laghlam D, Naudin C, Coroyer L, et al. Virtual reality vs. Kalinox® for management of pain in intensive care unit after cardiac surgery: a randomized study. Ann Intensive Care. 2021;11(1):74.
- Bruno RR, Lin Y, Wolff G, et al. Virtual reality-assisted conscious sedation during transcatheter aortic valve implantation: a randomised pilot study. EuroIntervention. 2020;16(12):e1014–e1020.
- Chiu PL, Li H, Yap KYL, et al. Virtual reality-based intervention to reduce preoperative anxiety in adults undergoing elective surgery: a randomized clinical trial. JAMA Netw Open. 2023;6(10):e2340588.
- Mohammadi H, Rasti J, Ebrahimi E. Virtual reality, fear of pain and labor pain intensity: a randomized controlled trial. Anesth Pain Med. 2023;13(1):e130387.
- Althumairi A, Sahwan M, Alsaleh S, et al. Virtual reality: is it helping children cope with fear and pain during vaccination? J Multidiscip Healthc. 2021;14:2625–2632.
- Gullo G, Rotzinger DC, Colin A, et al. Virtually augmented self-hypnosis in peripheral vascular intervention: a randomized controlled trial. Carediovasc Intervent Radiol. 2023;46(6):786–793.
- Smith V, Warty RR, Sursas JA, et al. The effectiveness of virtual reality in managing acute pain and anxiety for medical inpatients: systematic review. J Med Internet Res. 2020;22(11):e17980.
- Patel KV, Guralnik JM, Dansie EJ, et al. Prevalence and impact of pain among older adults in the United States: findings from the 2011 National Health and Aging Trends Study. Pain. 2013;154(12):2649–2657.
- Ford CG, Manegold EM, Randall CL, et al. Assessing the feasibility of implementing low-cost virtual reality therapy during routine burn care. Burns. 2018;44(4):886–895.
- Patel P, Ivanov D, Bhatt S, et al. Low-cost virtual reality headsets reduce perceived pain in healthy adults: a multicenter randomized crossover trial. Games Health J. 2020;9(2):129–136.
- Angelov V, Petkov E, Shipkovenski G, et al. Modern virtual reality headsets. Presentation at the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), June 26–28, 2020.
- Feller L, Feller G, Ballyram T, et al. Interrelations between pain, stress and executive functioning. Br J Pain. 2020;14(3):188–194.
- Dumoulin S, Bouchard S, Loranger C, et al. Are cognitive load and focus of attention differentially involved in pain management: an experimental study using a cold pressor test and virtual reality. J Pain Res. 2020;13:2213–2222.
- Koller D, Goldman RD. Distraction techniques for children undergoing procedures: a critical review of pediatric research. J Pediatr Nurs. 2012;27(6):652–681.
- Triberti S, Repetto C, Riva G. Psychological factors influencing the effectiveness of virtual reality-based analgesia: a systematic review. Cyberpsychol Behav Soc Netw. 2014;17(6):335–345.
- Adhanom IB, MacNeilage P, Folmer E. Eye tracking in virtual reality: a broad review of applications and challenges. Virtual Real. 2023;27(2):1481–1505.
- Wu D, Gao Y, Miao D. Using an eye tracker to measure information processing according to need for cognition level. Soc Behav Personal Int J. 2018;46(11):1869–1880.
- Lier EJ, Oosterman JM, Assmann R, et al. The effect of virtual reality on evoked potentials following painful electrical stimuli and subjective pain. Sci Rep. 2020;10:9067.
- Department of Business, Energy & Industrial Strategy (BEIS). The safety of domestic virtual reality systems: a literature review. Sep 2020. https://assets.publishing.service.gov.uk/media/5f763502d3bf7f7c2bcf9eb9/safety-domestic-vr-systems.pdf
- Kipping B, Rodger S, Miller K, et al. Virtual reality for acute pain reduction in adolescents undergoing burn wound care: a prospective randomized controlled trial. Burns. 2012;38(5):650–657.
- Bermo MS, Patterson D, Sharar SR, et al. Virtual reality to relieve pain in burn patients undergoing imaging and treatment. Top Magn Reson Imaging. 2020;29(4):203–208.
- Fanelli D. “Positive” results increase down the hierarchy of the sciences. PLoS One. 2010;5(4):e10068.